
2

The Medial Axis of a Multi-Layered Environment and Its

Application as a Navigation Mesh

WOUTER VAN TOLL, Utrecht University

ATLAS F. COOK IV, University of Hawaii at Manoa

MARC J. VAN KREVELD, Utrecht University

ROLAND GERAERTS, Utrecht University

Path planning for walking characters in complicated virtual environments is a fundamental task in simu-
lations and games. A navigation mesh is a data structure that allows efficient path planning. The Explicit
Corridor Map (ECM) is a navigation mesh based on the medial axis. It enables path planning for disk-shaped
characters of any radius.

In this article, we formally extend the medial axis (and therefore the ECM) to 3D environments in which
characters are constrained to walkable surfaces. Typical examples of such environments are multi-storey
buildings, train stations, and sports stadiums. We give improved definitions of a walkable environment (WE:
a description of walkable surfaces in 3D) and a multi-layered environment (MLE: a subdivision of a WE into
connected layers). We define the medial axis of such environments based on projected distances on the ground
plane. For an MLE with n boundary vertices and k connections, we show that the medial axis has size O (n),
and we present an improved algorithm that constructs the medial axis in O (n logn logk) time.

The medial axis can be annotated with nearest-obstacle information to obtain the ECM navigation mesh.
Our implementations show that the ECM can be computed efficiently for large 2D and multi-layered envi-
ronments and that it can be used to compute paths within milliseconds. This enables simulations of large
virtual crowds of heterogeneous characters in real-time.

CCS Concepts: • Theory of computation → Computational geometry; • Computing methodologies

→ Mesh geometry models; Modeling and simulation; • Mathematics of computing → Geometric topology;

Additional Key Words and Phrases: Medial axis, Voronoi diagram, multi-layered environment, navigation
mesh, path planning, crowd simulation

ACM Reference format:

Wouter van Toll, Atlas F. Cook IV, Marc J. van Kreveld, and Roland Geraerts. 2018. The Medial Axis of a
Multi-Layered Environment and Its Application as a Navigation Mesh. ACM Trans. Spatial Algorithms Syst.

4, 1, Article 2 (May 2018), 34 pages.
https://doi.org/10.1145/3204456

This research was supported by the COMMIT project (http://www.commit-nl.nl/).
Authors’ addresses: W. van Toll, M. J. van Kreveld, and R. Geraerts, Utrecht University, Department of Informa-
tion and Computing Sciences, Princetonplein 5, 3584 CC, Utrecht, Netherlands; emails: {W.G.vanToll, M.J.vanKreveld,
R.J.Geraerts}@uu.nl; A. F. Cook IV, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI 96822, USA; email:
acook4@hawaii.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 2374-0353/2018/05-ART2 $15.00
https://doi.org/10.1145/3204456

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

https://doi.org/10.1145/3204456
http://www.commit-nl.nl/
mailto:permissions@acm.org
https://doi.org/10.1145/3204456

2:2 W. van Toll et al.

1 INTRODUCTION

In many simulations and gaming applications, virtual characters need to plan and traverse visu-
ally convincing paths through a complicated environment in real time. We focus on entities that
move along walkable surfaces; we will refer to these entities as characters. Characters should move
smoothly and avoid collisions with obstacles and other characters. The environment in which they
move is typically 3D, but characters are constrained to walkable surfaces. These surfaces form the
walkable environment (WE). It is often useful to subdivide the WE into planar layers. We refer to
such a subdivision as a multi-layered environment (MLE).

A navigation mesh is a subdivision of the WE into polygons for the purpose of path planning.
The dual graph of this mesh has a vertex for each polygon in the mesh and an edge for each pair of
adjacent polygons. Characters can search in this graph to find global routes, which they traverse
while locally avoiding other characters.

In this article, we work toward a refined definition and construction algorithm of the Explicit
Corridor Map (ECM) [14, 62]. The ECM is a navigation mesh based on the medial axis. The medial
axis of an environment is the set of all points in the environment with more than one closest
obstacle; we will define this more precisely in Section 3 (for 2D environments) and Section 5.1 (for
WEs).

First, we revisit the medial axis in 2D. Next, we give improved definitions of WEs and MLEs, and
we define the medial axis of a WE and MLE based on projected distances onto the ground plane.
For an MLE with n boundary vertices and k connections between layers, where each connection
is a line segment when projected onto the ground plane, we show how to compute the medial axis
in O (n logn logk) time. Our algorithm uses several non-trivial insights into the characteristics of
a WE.

The medial axis of an MLE can easily be annotated to obtain the ECM navigation mesh. Figure 1
shows the ECM for a simple MLE. The ECM can be used to plan paths for disk-shaped characters
of any radius, which is typically not possible when using an arbitrary subdivision into polygons.
Because the ECM is a sparse graph that uses only O (n) storage, it is suitable for efficient path
planning. It also supports various operations that are important for crowd simulation, such as
finding the nearest static obstacle to a query point. Furthermore, it can be updated in real time
when obstacles appear or disappear. Combined with algorithms for path following and collision
avoidance, the ECM can be used to simulate large crowds of heterogeneous characters in real
time.

1.1 Contributions

This article formalizes and extends previous conference publications [14, 62] by defining and prov-
ing the essential characteristics of the medial axis and ECM in MLEs. Compared to our previous
work, the main contributions of this article are the following:

• We give improved definitions of WEs, MLEs, and the medial axis of a WE or MLE based on
projected distances (Sections 4 and 5.1).

• We solve a problem in our previous construction algorithm for the medial axis of an MLE
[62]. We present an improved algorithm, and we prove that this algorithm is correct and
that it runs in O (n logn logk) time (Section 5).

• We give a refined definition of the ECM navigation mesh (Section 6).
• We show via experiments that our implementation can efficiently generate the ECM and

compute paths in large MLEs (Section 8).

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:3

Fig. 1. 3D view of an MLE and its ECM navigation mesh. The ECM is a medial axis (the dark graph) annotated

with nearest-obstacle information (the light line segments).

2 RELATED WORK ON PATH PLANNING AND NAVIGATION MESHES

This section summarizes related research on path planning, navigation meshes, and crowd sim-
ulation. Several good overview books of this research area exist [28, 61]. We will focus on the
topics that are particularly relevant to the ECM navigation mesh. Related work on its underlying
structure, the medial axis, will be covered in Section 3.

2.1 Path Planning

In traditional motion planning, a robot needs to compute a collision-free trajectory from one con-
figuration to another [37, 38]. The number of degrees of freedom for the robot determines the di-
mensionality of the configuration space. For high-dimensional spaces, exact solutions are typically
intractible and probabilistic methods are often successful [32, 36]. Such methods do not compute
the configuration space explicitly. Instead, they represent it using a graph of sampled collision-free
configurations and motions. Several of these techniques generate samples that lie on the Voronoi
diagram or medial axis [12, 25, 42]. The exact medial axis is too difficult to compute whenever
there are three or more dimensions [2], which justifies the use of sampling by these techniques.
However, in this article, we do not look at high-dimensional motion planning, but at path planning
for disks in MLEs. We will show how to compute the medial axis of an MLE in an exact manner
based on projected distances.

In crowd simulation, characters are typically modeled as disks that move along walkable sur-
faces, which enables different types of algorithms than in traditional motion planning. Path plan-
ning for disks can be solved by inflating the obstacles in the environment by the character’s radius
(i.e., by computing Minkowski sums) and then computing a path for a point character [37, 38].
This approach requires a separate inflation process for each distinct radius.

To plan a shortest path for a point in a 2D space, one can use a shortest-path map [20] or a
visibility graph, which has O (n2) edges for an environment with n obstacle vertices [15]. The
Visibility-Voronoi Complex [69] is an extension that implicitly encodes the visibility graph for all
disk sizes; it can generate the visibility graph for a particular radius on the fly.

Path planning for large crowds typically uses a less complex graph (or roadmap) that does not
always yield the shortest path. The medial axis is such a roadmap; its application to path planning

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:4 W. van Toll et al.

for disk-shaped characters is referred to as the “retraction method” [46], and we use it as a basis
for our ECM navigation mesh. Roadmaps have been used frequently for crowd simulation [23,
57]. Characters should be allowed to locally deviate from the graph’s edges to increase variety
in the crowd and to avoid unnatural motions and collisions between characters. However, if the
graph does not store information about where the obstacles are, then it is relatively expensive to
compute these deviations. In a navigation mesh (which we will discuss in the next subsection),
such computations are easier, because the graph and the obstacle representation are united.

Another popular approach to path planning is to use a grid that subdivides the environment
into regular cells. Grids are easy to implement and well studied by the path planning community
(see, e.g., References [13, 35, 41, 60]). However, grids have resolution problems: A coarse grid (with
few cells) does not capture the environment’s details, whereas a fine grid (with many cells) quickly
becomes too costly to store and query.

2.2 Navigation Meshes in 2D Environments

A navigation mesh subdivides the configuration space into polygonal regions [59]. A global path in
a navigation mesh can be found by performing A* search [17] on the dual graph of the mesh. The
result is a sequence of regions to move through, such that characters can use the available space to
locally adjust their movements during the simulation. This makes navigation meshes more flexible
for crowd simulation than standard graphs. Navigation meshes are also more scalable to large
environments than grids [66].

Many navigation meshes exist for 2D environments; they are typically exact subdivisions of the
configuration space. Examples are the Local Clearance Triangulation (LCT) [27] and the Explicit
Corridor Map (ECM) [14]. These navigation meshes have the advantage that they encode clear-

ance information. As such, they can be used to compute paths for disk-shaped characters with an
arbitrary radius without explicitly inflating any obstacles.

2.3 Navigation Meshes in 3D Environments

Navigation meshes in 3D are usually designed for environments with a consistent direction of
gravity. We will use the term walkable environment to denote the surfaces on which characters
can walk. Many navigation mesh techniques automatically convert a 3D environment to a WE by
discretizing the environment into traversable and non-traversable cubes, or voxels. The pioneering
work by Pettré et al. [51] essentially computes an approximation of the multi-layered medial axis
that we define in this article. Their navigation mesh supports arbitrary character sizes but uses
overlapping disks that do not completely cover the environment. The Recast Navigation toolkit
[43] is very popular in the computer games industry, e.g., it is included in the Unity game engine
[68]. Oliva and Pelechano have presented a similar method called NEOGEN [49], and they have
investigated path planning for disks in arbitrary navigation meshes [48]. A disadvantage of voxels
is that they do not scale well to large environments, because these environments require many
voxels to obtain sufficient precision. Therefore, exact alternatives to 3D filtering are also being
investigated [53].

For many applications, it is useful to subdivide the WE into layers such that each layer can be
treated as a planar problem space. We will refer to such a subdivision as an MLE. In this article, we
extend the medial axis and the Explicit Corridor Map to MLEs. There are several ways to obtain an
MLE from a WE. Deusdado et al. have used rendering techniques assuming certain properties such
as axis-alignment [9], and Whiting et al. have shown how to extract layers from a CAD drawing
[70]. For an arbitrary WE represented by a triangle mesh, Hillebrand [21] has proven that obtaining
an optimal MLE (with a minimum number of connections) is NP-hard in the number of triangles,
but he has shown that good results can be obtained using heuristics [22].

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:5

A consequence of splitting a WE into layers and treating each layer as a 2D space is that height

differences along the surface are ignored. In all navigation meshes based on this principle (including
ours), slopes are not considered to affect the length of a path, and path lengths are effectively
projected onto the ground plane. This can be seen as a disadvantage.

However, finding short paths on terrains with height differences is known to be substantially
more difficult [31]. Recently, researchers have suggested to use the 3D environment itself as a
navigation data structure [5, 56], which coincidentally also supports environments with arbitrary
gravity directions. At the time of writing, these types of solutions are less mature; for instance, it
is unclear how to compute paths with arbitrary clearance and how to properly extend collision-
avoidance algorithms to this domain.

By contrast, projected distances provide a simplification that allow solutions in 2D to be extended
to 3D environments with a consistent gravity direction. In this article, we will provide this exten-
sion for the medial axis and the ECM. Extending these concepts further to also encode height
differences is a topic for future work.

2.4 Comparing Navigation Meshes

We have recently conducted a comparative study of navigation meshes [66], using unified def-
initions, objective quality metrics, and a benchmark suite that runs on a single computer. This
comparison included the multi-layered ECM from this article, several other state-of-the-art navi-
gation meshes [27, 43, 49, 51], and a simple grid-based method. Our study confirmed that voxel-
based extraction of a WE is not very scalable to large environments, which justifies a search for
alternatives.

For an analysis of the theoretical and practical (dis)advantages of the ECM compared to other
navigation meshes, we refer the reader to this comparative study [66]. We will not repeat the com-
parison here; instead, we will focus on definitions, algorithms, proofs, and experiments specifically
relevant to the medial axis and ECM.

2.5 Crowd Simulation

Navigation meshes are useful for simulating crowds of virtual characters with individual properties
and goals. Path planning on a navigation mesh leads to an indicative route that can be traversed
smoothly in real time [26]. Each character can locally avoid collisions with other characters using
forces [18, 55] or velocity selection [4, 29, 44]. Many other algorithms exist that can improve global
coordination and local behavior. These components can be mixed arbitrarily in a multi-level crowd
simulation framework [65].

Other crowd simulation algorithms aim to unify the global and local planning levels by
defining a potential field: a grid representation of the environment that stores the optimal
walking direction (toward a particular goal region) in each cell. These directions are updated
in real time in response to the crowd’s movement. While potential fields in general can contain
local minima in which characters would get stuck, various solutions specific to crowd sim-
ulation have alleviated this problem via global optimization [45, 50, 67]. Potential fields can
efficiently model dense crowds with many characters sharing the same goals and properties.
However, because each goal region and behavior type requires its own potential field, these
methods do not allow for large heterogeneous crowds in which each character has different
properties. If individuality is required, then navigation meshes with local collision avoidance are
preferred.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:6 W. van Toll et al.

Fig. 2. A simple 2D environment and its medial axis. (a) The obstacle space Eobs (shown in gray) consists of

line segments and polygons. Its complement is the free space Efree . (b) The medial axis is a graph through

Efree . True vertices are shown as large dots. Semi-vertices (small dots) occur when a bisector’s generator

changes. This is indicated by dashed segments, which are not part of the graph.

3 PRELIMINARIES: THE MEDIAL AXIS IN 2D ENVIRONMENTS

In this section, we give a formal definition of a 2D virtual environment and its medial axis. These
concepts are not novel, but they are required for understanding the extension to WEs and MLEs
that we will present next.

3.1 2D Environment

Let E be a bounded 2D planar environment with polygonal obstacles. We define the obstacle space

Eobs as the union of all obstacles, including the boundary of the environment. The complement of
Eobs is the free space Efree . An example of such an environment is shown in Figure 2(a). Let n be
the number of vertices that define the boundary of Efree using interior-disjoint simple polygons,
line segments, and points. We call n the complexity of E.

3.2 Medial Axis

The medial axis is a variant of the Voronoi diagram (VD) [2, 47]. For a planar set of point sites,
the VD is a subdivision of the plane into cells such that all points in a cell have the same nearest
site. The edges of the VD are parts of bisectors: line segments or half-lines on which every point is
equidistant to two sites. These bisectors meet at vertices that are equidistant to at least three sites.

The VD can be extended to handle line segments and polygons as sites. This version is sometimes
called the generalized Voronoi diagram or GVD [14, 40]. The edges of a GVD consist of line segments
and parabolic arcs, and degree-2 vertices occur at the positions where a bisector changes its shape.
Several robust implementations of the GVD exist [7, 19, 24, 30]. There are multiple definitions
of the GVD, differing mostly in how they handle site vertices shared by multiple sites. The term
generalized Voronoi diagram is also used for other generalizations of the VD [47].

The medial axis has been extensively studied in the field of computational geometry, usually for
2D polygons with or without holes [6, 8, 39, 54, 71]. As mentioned in Section 2.1, the medial axis is
also used frequently for motion planning in high-dimensional configuration spaces. In such spaces,
the medial axis is too difficult to compute exactly, so it needs to be approximated via sampling
techniques. We will now focus on the 2D domain.

Informally, the medial axis of a polygon P can be seen as the GVD of P ’s boundary segments,
restricted to (i.e., intersected with) the interior of P . Several definitions of the medial axis exist;

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:7

they mainly differ in their choice of which edges to prune from the GVD. We therefore give our
own definition, which is comparable to those by Preparata and Lee [39, 54], but applied specifically
to a 2D environment and its free space.

Definition 3.1 (Medial axis, 2D). For a bounded 2D environment E with closed polygonal obsta-
cles, let ma(E) be the set of all points in Efree that have at least two distinct equidistant nearest
points on the boundary of Efree , in terms of 2D Euclidean distance. The medial axis MA(E) is the
topological closure of ma(E).

Figure 2(b) shows the medial axis of an example environment. Since the medial axis is a pruned
Voronoi diagram, it forms a plane graph (a planar graph embedded in 2D). The term closure ensures
that degree-1 medial axis vertices (e.g., at the corners of the bounding box) are also included. Note
that the medial axis does not run into obstacle corners with an angle of ≤180 degrees (convex

corners), such as most corners of the U shape in Figure 2(b). Such edges do appear in a GVD of
line segment sites, because these corners are then shared by multiple sites.

Each medial axis arc A is the bisector of two generators: the endpoints or segments of Eobs that
are nearest to A. If one generator is a line segment and the other is a point, then A is a parabolic
arc; otherwise, A is a line segment.

In this article, we refer to all medial axis vertices of degree 1, 3, or higher as true vertices. We
refer to the degree-2 vertices as semi-vertices, because the medial axis only changes its shape at
these points. Observe from Figure 2(b) that a semi-vertex occurs when the medial axis crosses a
normal vector at a convex obstacle corner. We define an edge as a sequence of medial axis arcs
between two true vertices.

3.3 Complexity of the Medial Axis

It is well-known that the GVD of non-crossing line segments with n distinct endpoints has O (n)
vertices and edges and can be computed in O (n logn) time [2, 3]. The three most common con-
struction algorithms for the point-site Voronoi diagram (plane sweep [11], randomized incremen-
tal construction [16], and divide-and-conquer [58]) can each be extended to support line-segment
sites as well [2].

The medial axis has the same asymptotic size of O (n), because it is a pruned GVD. The medial
axis can be obtained from the GVD without increasing the overall asymptotic running time [8, 34].

4 DEFINITIONS OF WALKABLE AND MULTI-LAYERED ENVIRONMENTS

In this section, we define the types of environments embedded in 3D for which we want to con-
struct a navigation mesh. Our main assumption is that there is a consistent direction of gravity
throughout an environment. For example, we support multi-storey buildings, but not spherical
planets. As explained in Section 2, this is a common assumption for many navigation meshes, and
we consider other 3D surfaces to be outside the scope of this article.

Throughout this article, a 3D environment is a collection of polygons in R3. These polygons may
include floors, ceilings, walls, or any other type of geometry. Figure 3(a) shows a simple example
of a 3D environment.

4.1 Walkable Environment

Informally, a WE can be thought of as a set of polygonal surfaces in R3 on which characters can
walk. Characters can move from one polygon onto another if these polygons are connected in 3D.
The free space Efree of a WE is simply the entire set of surfaces. Unlike in 2D environments, the
obstacle space Eobs is not intuitively defined, but we will sometimes refer to points on the boundary
of Efree as obstacle points. Figure 3(b) shows a simple example of a WE.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:8 W. van Toll et al.

Fig. 3. A simple 3D environment for which we want to compute a navigation mesh. (a) The original environ-

ment is a collection of polygons in 3D. (b) A WE is a set of polygons along which characters can walk. (c) An

MLE is a subdivision of the WE into 2D layers. Connections between layers are shown as bold line segments

in this example.

A WE may consist of multiple connected components: For example, consider two islands with
no bridge connecting them. In topological terms, each component is an orientable 2-manifold (a
surface) with a boundary. This intuitively means that the WE has a “top” and “bottom” side, and
any point on the bottom side cannot be reached from a point on the top side without intersecting a
boundary. Geometrically, we are only interested in the top side, i.e., the floors and not the ceilings.
The WE is also what we call direction-consistent: Slopes are allowed, but there is a single gravity
direction for the entire environment. This leads to the following formal definition:

Definition 4.1 (Walkable environment). A walkable environment (WE) is a set of interior-disjoint
polygons inR3. Topologically, each connected component of a WE is an orientable 2-manifold with
a boundary. Geometrically, the WE is direction-consistent: There exists a horizontal ground plane
P below the WE such that for any non-boundary point q, the infinitesimal neighborhood σ (q) of
q does not overlap itself when projected vertically down onto P . Semantically, the WE represents
all polygons on which characters can walk.

In theory, it does not matter how a WE is created. In practice, a WE can be obtained from a
3D environment by filtering out unwalkable parts, e.g., surfaces that are too steep and surfaces
along which the ceiling is too low for characters to pass under. (Note that filtering out steep sur-
faces leads to direction-consistent output.) Such a filtering process typically also merges poly-
gons that are nearly adjacent; for example, staircases are converted into ramps. As explained in
Section 2.3, the details of these filtering techniques are outside the scope of this article. Voxel-based
implementations exist [43, 49, 51], and exact alternatives are in development [53].

Once more, it is important to note that the entire WE can be self-overlapping when projected
onto the ground plane P . This is the main difference to 2D environments, and it is the main reason
that we introduce MLEs next.

4.2 Multi-Layered Environment

An MLE is a subdivision of a WE into layers such that each individual layer can be projected onto
the ground plane P without overlap. Although a single layer does not need to have a particular
meaning, a typical example of a layer is one floor of a building.

A subdivision into layers is useful for many purposes, including visualization (each layer can be
drawn in 2D), identification (all surface points can be uniquely specified using a 2D position and a
layer ID), and the construction of geometric data structures (existing 2D construction algorithms
can be applied to each layer). In Section 5, we will use the concept of layers to compute the medial
axis of a WE.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:9

The layers of an MLE are connected by curves that we call connections. Intuitively, they are
the “cuts” that were introduced during the subdivision into layers, and they are the edges along
which the layers can be “glued together” to obtain the original WE. To facilitate the algorithm of
Section 5, we require that connections have particular geometric properties. Formally, we define
an MLE as follows:

Definition 4.2 (Multi-layered environment). A multi-layered environment (MLE) is a WE that
has been subdivided into l planar layers, L = {L0, . . . ,Ll−1}, using a set C = {C0, . . . ,Ck−1} of k
connections.

Each layer Li ∈ L is a set of walkable surfaces that are non-overlapping when projected onto
the ground plane P . The free space Efree,i of Li is the union of all polygons in Li . Combining the
free space of all layers yields the free space Efree of the original WE.

Each connection Cq ∈ C is a curve with the following properties:

• It lies on the shared boundary of two layers Li and Lj (i � j), thus connecting the walkable
polygons of these layers.

• Its endpoints lie on existing boundary vertices of Efree , so its endpoints are impassable
obstacles.

• Its interior lies entirely inside the interior of Efree , so it follows the surface of the WE without
intersecting the boundary of Efree .

• Its interior does not intersect any other connections.
• Its projection onto the ground plane P is a straight line segment.

Figure 3(c) shows an example of an MLE. Note that the MLE is still embedded in 3D, but each
individual layer can be projected onto P without self-overlap, if desired. Therefore, the projection
of a layer Li onto P is essentially a 2D environment with obstacles as described in Section 3.1. The
boundary vertices of these obstacles are also boundary vertices of Efree . (Conversely, if we embed
a 2D environment in R3, we obtain a special case of a WE, which is also an MLE with one layer
and no connections.)

The connections in the example of Figure 3(c) are straight line segments in R3, but this is not
necessary in general: A connection can be any curve that satisfies the constraints given in Theo-
rem 4.2. These constraints are important for our construction algorithm in Section 5.

Two layers Li and Lj may be connected through multiple connections at different positions;
for example, imagine a bridge that connects to the same layer at both ends. Also, a subdivision
into layers is usually not unique: Any subdivision that meets the requirements described above is
acceptable. As described in Section 2.3, obtaining an MLE with a minimum number of connections
is NP-hard [21], but there are several heuristic approaches to obtaining a valid MLE.

4.3 Complexity of a Multi-Layered Environment

The complexity of an MLE is given by the number of connections k and the number of obstacle
vertices n in all layers combined. Let ni be the number of obstacle vertices in a layer Li . We define
n as
∑l−1

i=0 ni . Note that a vertex occurs in multiple layers if it is an endpoint of a connection. The
following lemma bounds the number of connections.

Lemma 4.3. For any MLE with l layers and n obstacle vertices, the number of connections k is O (n).

Proof. Letni be the number of obstacle vertices in a layer Li . By definition, n =
∑l−1

i=0 ni . In each
layer Li , the number of connections is bounded by the maximum number of non-intersecting line
segments that can be drawn between its ni vertices. Euler’s formula for planar graphs implies that
this is O (ni). Therefore, the total number of connections is O (

∑l−1
i=0 ni) = O (n). �

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:10 W. van Toll et al.

Fig. 4. The medial axis of a WE E is based on path lengths projected onto the ground plane P . (a) The shortest

path between two points s and д is shown as a bold curve. Its projected length is indicated by the dashed

curve. For a non-boundary point q ∈ Efree with a nearest obstacle point nq , the set of points in Efree within

a distance of dP (q,nq) from q is a disk when projected onto P . (b) The medial axis MA(E) is drawn on the

surfaces of E.

5 THE MEDIAL AXIS IN MULTI-LAYERED ENVIRONMENTS

In this section, we first define the medial axis for walkable and multi-layered environments. Be-
cause our definitions do not require a particular subdivision into layers, they apply to both WEs
and MLEs. Next, we show how to compute the medial axis in O (n logn logk) time for an MLE with
n boundary vertices and k connections.

5.1 Definition and Properties

To define the medial axis for walkable and multi-layered environments, we need a notion of dis-
tance and path length. We will use the direction-consistency of the WE to define projected distances

in which height differences are ignored. Again, we acknowledge that this is not the same as the
3D distance on a surface. In Section 2.3, we have argued why this simplification is useful.

For two points s and д in a WE or MLE, let π (s,д) be a path from s to д through Efree along
the walkable surfaces. We define the projected length of π (s,д) as the curve length of π (s,д) when
projected vertically onto the ground plane P . This projected path can intersect itself: For instance,
consider a path along a spiral staircase.

Let π ∗ (s,д) be a path from s to д with the smallest projected length (among all possible paths
from s to д). We define the projected distance dP (s,д) between s and д as the projected length of
π ∗ (s,д). That is, dP (s,д) ignores any height differences along paths from s to д. Figure 4(a) shows
an example of projected distances.

A shortest path π ∗ (s,д) is unobstructed if it does not have any bending points around obstacles.
The projection of an unobstructed path onto P is a single line segment, so its projected length is
simply the 2D Euclidean distance between s and д (when projected onto P). The following prop-
erties hold:

Property 5.1 (Straight-line property). The shortest path π ∗ (q,nq) from any point q ∈ Efree

to any of its nearest boundary points nq is unobstructed.

Property 5.2 (Empty-circle property). Let q be a point in Efree and letnq be a nearest boundary

point to q, at projected distance d = dP (q,nq). For all points q′ ∈ Efree for which dP (q,q′) ≤ d , the

shortest path π ∗ (q,q′) is unobstructed. When projected onto P , these points form a disk with radius d .

If a WE has been converted to an MLE (i.e., if it has been subdivided into layers), then the nearest
boundary point nq to a point q ∈ Efree may lie on a different layer than q itself. Consequently, the
empty disk around q may span multiple layers. This does not matter for our definitions.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:11

We now define the medial axis based on the function dP :

Definition 5.1 (Medial axis, multi-layered). For a walkable or multi-layered environment E with
free space Efree , let ma(E) be the set of all points in Efree that have at least two equidistant nearest
points on the boundary of Efree with respect to the projected distance function dP . The medial axis
MA(E) is the topological closure of ma(E).

Figure 4(b) shows the medial axis of an example WE. Because the remainder of this article is
based on the projected distance function, we will often omit the term projected when discussing
distances and path lengths.

If an environment E consists of a single layer Li , then MA(E) = MA(Li). Likewise, if we treat a
2D environment as an MLE with a single layer, then Definition 5.1 is actually a generalization of
Definition 3.1, and we have obtained a single definition for the medial axis of 2D environments,
MLEs, and WEs.

The medial axis becomes more interesting if E is a WE that overlaps itself when projected
onto P or (equivalently) if E is an MLE that contains overlapping layers. In these cases, MA(E)
is typically not planar, but intuitively, it is locally similar to a 2D medial axis everywhere due
to the straight-line and empty-circle properties. We will use these properties to prove that our
construction algorithm for the multi-layered medial axis is correct.

5.2 Construction Algorithm Outline

We now give an outline of our algorithm that computes the medial axis of an MLE E. The result is
also the medial axis of the corresponding WE. However, our algorithm makes use of the fact that
the 2D medial axis is easy to compute. For this reason, we assume that the environment has been
partitioned into layers. We acknowledge that this is a necessary pre-processing step that can be
solved using other algorithms [22]. Our construction algorithm consists of the following steps:

(1) For each individual layer Li , project Li onto P and compute its 2D medial axis, while
treating all of its connections as closed impassable obstacles. This yields exactly the medial
axis MA(Li) according to the projected distance function dP , but under the assumption
that each connection in C is an obstacle. The result for all layers combined is the medial
axis of E under the same assumption. We denote this result by MA(E,C).

(2) Given MA(E,C′) with C′ ⊆ C, choose a closed connectionCq ∈ C′. By definition, the ob-
stacle associated with Cq is a line segment when projected onto P . Open the connection
Cq by removing its interior as an obstacle and repairing the medial axis in its neighbor-
hood. (The endpoints of the connection will remain obstacles, because they are on the
boundary of Efree .) The result is the medial axis of E in which Cq is no longer treated as
an impassable obstacle, i.e., it is MA(E,C′′) with C′′ = C′ \ {Cq }. In MA(E,C′′), there are
new edges of the medial axis that pass through Cq , and the neighborhood of Cq is now
connected. In Section 5.4, we will describe our algorithm for opening a connection.

(3) Repeat step 2 until all connections are open. The result is MA(E, ∅) = MA(E).

In short, we initially treat all connections as closed and then iteratively remove them as obsta-
cles. Because connections project to line segments, opening a connection is essentially the deletion
of a line segment Voronoi site [2] but with the extra difficulty that the neighborhood of the deleted
site may span multiple layers. We will explain this further in Section 5.4. For now, it is sufficient
to know that existing deletion algorithms for Voronoi sites in 2D [1, 10, 33] cannot immediately
be applied. Section 5.4 will present an alternative algorithm.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:12 W. van Toll et al.

Fig. 5. Opening a connectionCi j in an MLE. (a) Initially,Ci j is an obstacle on both sides, Si and Sj . (b) 2D top

view of the area around Ci j . The influence zone Zi j = Zi ∪ Z j is shaded. The obstacle points Ni j = Ni ∪ Nj

that are nearest to Zi j are shown in bold black. (c) When opening Ci j , the medial axis changes only inside

Zi j . This medial axis MZ is defined by Ni j .

5.3 Properties of a Closed Connection

To develop an algorithm for opening a closed connection, we must first study the properties of such
a connection. Consider a closed connection between two layers Li and Lj , as in Figure 5(a). We
will now refer to this connection asCi j to emphasize to which layers it is associated. This notation
is not unique, because Li and Lj may be connected via other connections as well. However, in
our discussion of opening a single connection chosen by the main algorithm, it should be clear to
which instance we are referring.

5.3.1 Sides. The connection is currently treated as an impassable obstacle between Li and Lj .
Thus, it occurs as an obstacle for the medial axis on two “sides.” We define the side Si as the set of
all walkable surfaces and boundary points that are currently reachable from Ci j by starting in Li .
Likewise, the side S j consists of all surfaces and obstacle points that can be reached from Ci j by
starting in Lj . These sides are also annotated in Figure 5(a).

A side Si at this point in our algorithm is not necessarily the same as a layer Li in the environ-
ment. The side Si includes at least the part of Li that hasCi j on its boundary. If other connections
are already open, then Si may contain other layers as well. If sufficiently many connections have
been opened such that Li and Lj are already connected via another route, then Si and S j are even
equal. However, for our algorithm, it does not matter which layers are already included in Si or S j ,
and it is useful to speak of two different sides of the connection.

5.3.2 Influence Zone. When we open Ci j , we effectively remove the interior of Ci j , denoted by
Int(Ci j), as an obstacle from the environment. We do not remove the endpoints, because they will
remain obstacles in the WE.

Therefore, we need to determine a new nearest obstacle for all points in the WE that were
previously nearest to Int(Ci j). Let the influence zone Zi j be the closure of the set of all points in
E that currently have Int(Ci j) as a nearest obstacle. Observe from Figure 5(b) that Zi j consists of
two parts: one on side Si and the other on side S j . (Conceptually, it does not matter if Si and S j are
already equal.) For convenience, we will refer to these parts as Zi and Z j , respectively.

Lemma 5.2. If the interior of a connection Ci j is removed as an obstacle, then the medial axis

changes only inside the influence zone Zi j .

Proof. By the definition of Zi j , removing Int(Ci j) causes the nearest obstacle points to change
only inside (and on the boundary of) Zi j . After all, the other points in Efree were already closer to
other obstacles. A consequence is that openingCi j causes the medial axis to change only inZi j . �

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:13

Lemma 5.2 implies that MA(E,C′) (the current medial axis with Ci j as an obstacle) and
MA(E,C′′) (the medial axis without Ci j as an obstacle, which we want to compute) are equal
except in Zi j . It is therefore useful to analyze the shape of Zi j .

Lemma 5.3. The influence zone Zi j is bounded by the two lines perpendicular to Ci j through Ci j ’s

endpoints.

Proof. (We will refer to these two lines as the endpoint normals of Ci j .) Consider any point
p ∈ Efree that is not between or on the endpoint normals of Ci j . Such a point cannot be closest to
Int(Ci j), because it must be closer to an endpoint ofCi j or to another obstacle in the environment.
Therefore, p cannot be in Zi j . �

Lemma 5.4. Zi and Z j are both bounded by a sequence of medial axis arcs. Both sequences, denoted

by α (Zi) and α (Z j), are uninterrupted and monotone with respect to the line supporting Ci j .

Proof. We prove the lemma for Zi ; the proof for Z j is analogous. Zi is bounded by a set of
medial axis arcs α (Zi) that have a nearest obstacle point on Ci j . For every point z on α (Zi), the
nearest point c on Ci j can be reached via a line segment zc that is perpendicular to Ci j . If this
were not true, then another obstacle would be in the way and c would not be a nearest obstacle
point. Furthermore, c is a nearest obstacle point for all points on zc , because this nearest obstacle
cannot change when moving from z to c . Thus, zc lies entirely inside Zi . Because Zi consists of
infinitely many line segments that all have an endpoint on Ci j and that are all perpendicular to
Ci j , the boundary α (Zi) is monotone with respect to Ci j .

Finally, the definition of an MLE enforces that Int(Ci j) does not intersect any obstacles. Because
of this, every point on Int(Ci j) has some free space in its neighborhood: for each c ∈ Int (Ci j), the
line segment zc exists and has non-zero length. The endpoints of Ci j are the only points where z
and c can be equal. This proves that α (Zi) is a single sequence of arcs. �

These lemmas have the following consequences.

Corollary 5.5. The boundary of the influence zone Zi j is a single closed loop consisting of α (Zi),
α (Z j), and the endpoint normals of Ci j .

Corollary 5.6. The influence zone Zi j can be projected onto the ground plane P without overlap.

This projection is a single shape without holes (because it has only one boundary).

5.3.3 Neighbor Set. Next, we determine which obstacles are required to update the medial axis
inside Zi j . On one side Si of the connection, let Ni be the set of all obstacle points that are nearest
to at least one point on α (Zi), excluding Int(Ci j) itself. (On the other side S j , let Nj be defined
analogously.) These are the obstacle points that (together withCi j) generate the arcs in α (Zi). We
exclude Int(Ci j) from Ni , because we will be removing this interior as an obstacle. We do explicitly
include the endpoints of Ci j in Ni , because these will remain obstacles.

We define the neighbor set Ni j as the union of Ni and Nj . Informally, this set contains the
“Voronoi neighbors” of the connection. Ni j consists of line segments and points on the bound-
ary of Efree . These are not necessarily the complete original boundary segments but only the parts
that are actually relevant for Zi j . Note that the neighbors can originate from many different lay-
ers and that they can even be (parts of) other connections that are still closed. A neighbor set is
illustrated in Figure 5(b).

We will now prove that Ni j contains the obstacle points that define the medial axis in Zi j when
Int(Ci j) is removed. Lemma 5.7 proves that all points of Ni j are needed; Lemma 5.8 proves that no

other points are needed.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:14 W. van Toll et al.

Lemma 5.7. When Ci j is opened, every obstacle point in Ni j is a nearest obstacle for at least one

point in Zi j .

Proof. When the connection is still closed, every point p ∈ Ni j is a nearest obstacle for at least
one point z on the boundary of Zi j , by definition. When Ci j is opened, p will still be nearest to z,
because opening the connection only exposes z to obstacles that are farther away. Hence, there
remains at least one point in Zi j (namely z) for which p is a nearest obstacle. This means that all
points of Ni j are required. �

Lemma 5.8. When Ci j is opened, Ni j contains all possible nearest obstacle points for any point in

Zi j .

Proof. We prove the lemma for Zi ; the proof for Z j is analogous. For any point p ∈ Zi , the
nearest obstacle points currently lie in Ni or on Ci j , by definition. Removing the interior of Ci j

cannot cause other obstacle points on the same side Si to suddenly become nearest to p. The only
remaining option is that an obstacle on the other side S j becomes nearest to p. Such an obstacle
must definitely lie in Nj : By definition, all other obstacle points of S j were already not closest to
Ci j itself, so they cannot be closest to a point beyond Ci j . Therefore, all possible nearest obstacle
points for Zi are included in Ni and Nj . �

5.4 Opening a Connection

To open a closed connectionCi j , we now know that we only need to update the medial axis inside
the influence zone Zi j . Thus, to convert the current medial axis MA(E,C′) into MA(E,C′′) with
C ′′ = C ′ \ {Ci j }, it is sufficient to only compute MA(E,C′′) ∩ Zi j and then replace MA(E,C′) ∩ Zi j

by it. We will refer to the new medial axis part, MA(E,C′′) ∩ Zi j , as MZ for convenience.
Thus, our goal is to compute MZ . Lemmas 5.7 and 5.8 guarantee that MZ is defined by the

obstacles in the neighbor set Ni j . An example of MZ is shown in Figure 5(c).

Lemma 5.9. The medial axis MZ is a tree that can be projected onto P without overlap.

Proof. MZ can only contain cycles if Zi j contains holes; otherwise, there are no obstacles to
circumnavigate. Furthermore, MZ can only consist of multiple connected components if Zi j con-
sists of multiple disconnected shapes. Corollary 5.6 states that Zi j is a single shape without holes.
Therefore, MZ is a single tree.

Corollary 5.6 also states that Zi j is non-overlapping when projected onto P . Because MZ lies
entirely inside Zi j , it can be projected onto P without overlap as well. �

In previous work [62], we computed MZ by projecting all obstacles of Ni j onto the ground plane
P and computing the 2D medial axis of this projection. This is equivalent to a deletion of a site
from a 2D Voronoi diagram [10]; the algorithm takes O (m logm) time wherem is the complexity of
Ni j . Also, the algorithm is easy to implement by using any available library for Voronoi diagrams
in 2D. We therefore still use it in our current implementation (Section 7).

However, due to the multi-layered structure of E, this algorithm does not work in all environ-
ments. A single common projection onto P may cause an obstacle of Ni j to influence parts of Zi j

to which it is actually not closest. Figure 6 shows an example in which the obstacles Ni on side Si

cannot be treated as a planar set.
We now propose an improved algorithm that uses projected distances without explicitly pro-

jecting all of Ni (or Nj) onto P at the same time. Our new approach starts at the boundary of Zi j

and traces the medial axis from there, based on the obstacles that are locally nearest. This avoids
the problem of Figure 6. The new approach is outlined in Figure 7: Figure 7(a) shows the current
situation with Ci j closed, and the other subfigures represent the algorithm for opening Ci j .

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:15

Fig. 6. Example in which projecting the entire neighbor set onto the ground plane P leads to problems.

(a) One side Si of a connectionCi j contains a ramp and a flat surface. (In this view, the flat surface is partly

occluded by the ramp. The occluded boundary part is shown in dotted gray.) Ni (shown in bold) contains

obstacle points from both parts. (b) A projection of the same situation onto P . (c) If we project all of Ni onto

P at the same time, then we effectively treat the points of Ni as obstacles in all surfaces. This will yield an

incorrect medial axis for Zi .

Fig. 7. We compute the medial axis MZ in three steps. (a) The medial axis when Ci j is still closed. (b) MZ ,i

uses only the obstacles of Ni and assumes that Z j extends to infinity. We compute it using a plane sweep

on the ground plane P , starting with the sweep line L at Ci j , without explicitly projecting all of Ni onto P at

the same time. (c) Analogously, MZ , j uses only Nj . (d) We merge the two parts to obtain MZ .

Let MZ ,i be MZ under the assumption that there are no obstacles in Nj and that Z j extends to
infinity. Thus, MZ ,i is defined solely by the obstacles of Ni . By the same arguments as before, the
version of Zi j in which Z j extends to infinity is a simple shape when projected onto P (Corol-
lary 5.6), and MZ ,i is a tree that does not overlap in P either (Lemma 5.9). An example is shown in
Figure 7(b).

Let MZ , j be defined analogously (Figure 7(c)). We compute MZ ,i and MZ , j separately and then
merge them to obtain MZ (Figure 7(d)).

5.4.1 Computing a Single Part. To compute MZ ,i , we use the plane sweep algorithm by Fortune
[11], which traces a Voronoi diagram (VD) by moving a horizontal sweep line L downwards. This
algorithm is defined for sites in 2D, but we will show how to apply it to our multi-layered problem.

A thorough analysis of Fortune’s algorithm has been given by de Berg et al. [3]. We will repeat
the most important features. The algorithm maintains an x-monotone “beach line” consisting of
bisector arcs; each arc is defined by the sweep line L and an input site above L. The endpoints of
these beach line arcs (which are referred to as break points) are the centers of the largest empty
disks in the environment that are tangent to L. The VD below the beach line is yet to be determined.
As the sweep line moves downwards, the beach line changes, and its break points trace the edges
of the VD. There are two types of events: site events when L reaches a new site, and circle events
when L reaches the lowest point of a circle through three sites defining adjacent arcs on the beach
line. Each event indicates that a site starts or stops generating a particular arc on the beach line.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:16 W. van Toll et al.

Fig. 8. The environment from Figure 6(b) when the sweep algorithm begins. A disk on the beach line may

contain obstacles from other layers when projected onto P , but these are not nearest obstacles.

We apply Fortune’s algorithm to our multi-layered problem by initializing the algorithm in such
a way that all site events are already handled and all circle events can be processed just as in 2D.
Assume without loss of generality that Ci j is horizontal and that Zi lies above it. We start with a
sweep line at the height ofCi j and initialize the beach line as the sequence of arcs α (Zi). Lemma 5.4
states that this beach line is x-monotone, given thatCi j is horizontal. By the same argument, it will
remain x-monotone during the sweep. After initialization, we move the sweep line downwards,
and the algorithm proceeds exactly as if we were working in 2D.

The essential difference from a 2D problem is that the beach line now represents empty disks
in the MLE and not on a single plane. To explain this further, Figure 8 shows the initial sweep
line situation for the self-overlapping environment of Figure 6. An empty disk on the beach line is
highlighted in blue. If we would project all of Ni onto P at the same time (as in our old algorithm
[62]), then this disk would suddenly contain obstacles from other layers. However, these obstacles
are not nearest obstacles according to our distance function dP . This is why the old algorithm failed:
It did not respect the empty-circle property of an MLE. The new algorithm succeeds because it does

respect this property.
Each individual event in the sweep algorithm relies only on a point on the beach line and its

nearest obstacles. Due to the straight-line and empty-circle properties given in Section 5.1, an event
can be projected onto P , and its geometric computations will then work exactly as in 2D: Disks are
still disks, and paths to nearest obstacles are still straight-line segments. The overall algorithm is
a combinatorial sequence of events, so it does not require a projection of all events onto P at the
same time. Therefore, the algorithm is not affected by the multi-layered structure of Ni .

We will now explain further which events occur and how they can be processed.

Site events. When the sweep begins, the endpoints of Ci j lie exactly on the sweep line. Both
endpoints induce a site event that needs to be processed immediately. The following lemma implies
that all other sites lie above Ci j , so there are no other site events.

Lemma 5.10. Each point of Ni either lies above Ci j or is an endpoint of Ci j .

Proof. We will prove that any obstacle point on side Si that does not lie above Ci j cannot be
in Ni . By definition, the interior of Ci j is excluded from Ni , and the endpoints of Ci j are included.
Thus, we only need to consider the other obstacle points of Si .

Recall that Ci j is still a closed obstacle when the set Ni is determined. This means that paths
cannot yet go throughCi j . Letq be any obstacle point on side Si that lies below or on the horizontal
lineC throughCi j . Let z be an arbitrary point in Zi , and let c be the endpoint ofCi j that is nearest
to z. Note that the shortest path π ∗ (z, c) is unobstructed. We can prove that π ∗ (z,q) is always
longer:

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:17

Fig. 9. One side Si of a horizontal connection Ci j . An arbitrary point in z ∈ Zi is highlighted. Any obstacle

point q below or on the supporting lineC ofCi j cannot belong to the neighboring obstacles Ni . (a) The case

in which π∗ (z,q) does not navigate aroundCi j . (b) The case in which π∗ (z,q) navigates aroundCi j . In both

cases, an endpoint c of Ci j will be closer to z than q is. Therefore, q cannot be in Ni .

• If the line segment zq does not intersect Ci j when projected onto P , then the shortest path
π ∗ (z,q) is at best unobstructed, so it is at least as long as zq. See Figure 9(a).

• Otherwise, π ∗ (z,q) must navigate aroundCi j , so it is at best a sequence of two line segments
that bends around c (or the other endpoint of Ci j). See Figure 9(b).

In both cases, π ∗ (z,q) is clearly longer than π ∗ (z, c). Therefore, q cannot be nearest to any point
in Zi , and q cannot occur in Ni . �

Circle events. Initially, the potential circle events can be obtained by inspecting all 3-tuples of
adjacent arcs in α (Zi), just as in 2D. Because we look at adjacent arcs only, we will only trace
Voronoi edges of obstacles that are actually Voronoi neighbors in the MLE. Since MZ ,i will be a
tree and Zi j is planar when projected onto P , only adjacent Voronoi edges traced on the beach line
can meet in a Voronoi vertex. Therefore, all circle events are discovered.

The effect of a circle event is the same as in 2D. Two of the empty disks on the beach line merge
into one, a site locally disappears as a nearest site, and an arc disappears from the beach line. In
terms of the VD, two Voronoi edges merge into a Voronoi vertex, and a new Voronoi edge starts
being traced. The disappearance of an arc from the beach line induces two new 3-tuples of adjacent
arcs. The circles tangent to the corresponding 3-tuples of sites may induce new circle events below
the sweep line. These new events will be added to the event queue (sorted by y coordinate).

In summary, we generate the initial events using α (Zi) as the beach line. After that, each indi-
vidual event (i.e., each change of a nearest site) can be processed exactly as in 2D. Therefore, all
events are recognized, and the algorithm correctly computes MZ ,i .

As shown in Figure 7(b), we end up tracing a tree of medial axis arcs, starting at the leaves
and moving toward the root as we sweep downwards. By Lemma 5.10, the endpoints ofCi j are the
lowest sites, so the final event occurs when the endpoints ofCi j become the only remaining nearest
obstacles to the sweep line. These endpoints generate an infinite final edge that is perpendicular
to Ci j .

5.4.2 Merging the Two Parts. We compute MZ , j similarly to MZ ,i but by starting with α (Z j) as
the beach line and moving the sweep line upwards instead of downwards. Next, we mergeMZ ,i and
MZ , j to obtain MZ . We do this by using the merge procedure for Voronoi diagrams from Shamos
and Hoey [58]. The merge procedure traverses the Voronoi cells of MZ ,i and MZ , j simultaneously
and builds a new monotone sequence of Voronoi edges between them. Afterwards, it removes the
parts ofMZ ,i andMZ , j that are no longer needed. Figure 10 shows an adapted version of Figure 7(d)
in which the result is easier to see.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:18 W. van Toll et al.

Fig. 10. Merging the medial axes MZ ,i (green) and MZ , j (red) to obtain MZ . The result is a combination of

green edges, red edges, and a monotone sequence of newly generated edges (shown in bold blue) that can

be computed from left to right.

The merge procedure is originally defined in 2D, but it relies on two main requirements that
are also met in our multi-layered version of the problem. The first requirement is that MZ ,i and
MZ , j must be planar; we have shown in Section 5.4.1 that this requirement is fulfilled. The second
requirement is that Ni and Nj must lie in separate half-planes. Lemma 5.10 implies that this holds:
Ni and Nj are separated by C . The only exceptions are the endpoints of Ci j at which the merge
starts and ends.

In each step of the merge procedure, there is one nearest site (a point or a line segment) ni ∈ Ni

and one nearest site nj ∈ Nj , and the new Voronoi edge is the bisector of ni and nj . This bisector
arc ends when either of the nearest sites changes. Because the medial axes MZ ,i and MZ , j are
correct, they represent for all points in Zi j the nearest sites from Ni and Nj , respectively. They
therefore store all the information required to detect the changes in nearest sites. Furthermore,
the computations in each step work exactly as in 2D due to the straight-line and empty-circle
properties. Thus, the merge procedure [58] is not affected by the potential multi-layered nature of
Ni j , and it correctly computes MZ .

5.4.3 Summary. We now summarize our algorithm for opening a connection. Let E be an MLE,
and let MA(E,C′) be the medial axis computed so far, in which a non-empty set of connections
C′ ⊆ C is closed. We open a connection Ci j ∈ C′ to obtain MA(E,C′′), where C′′ = C ′ \ {Ci j }.
Opening Ci j works as follows:

(1) Remove the arcs from MA(E,C′) that are nearest to the interior ofCi j . These are the arcs
of MA(E,C′) that bound the influence zone Zi j described in Section 5.3.

(2) Compute MZ = MA(E,C′′) ∩ Zi j as described in Sections 5.4.1 and 5.4.2.
(3) Insert MZ into MA(E,C′) to obtain MA(E,C′′).

5.5 Algorithm Correctness

The overall construction algorithm outlined in Section 5.2 first computes the medial axis with all
connections as closed obstacles. It then iteratively opens a closed connection, using the algorithm
from Section 5.4, until all connections are open. The following theorem states that this algorithm
correctly computes the multi-layered medial axis.

Theorem 5.11. Let E be an MLE. Computing MA(E,C) and then iteratively opening each connec-

tion in C as described in Section 5.4 yields the medial axis MA(E).

Proof. Each iteration of this algorithm starts with a correct medial axis MA(E,C′) and com-
putes a correct medial axis MA(E,C′′) in which one more connection has been removed as an

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:19

obstacle. By induction over the number of iterations, the final result is the correct medial axis
MA(E) in which all connections are traversable. �

The connections can be opened in any order without affecting the correctness of the algorithm.
However, we will see in the next section that opening the connections in a particular order can
affect the running time of the algorithm.

5.6 Algorithm Complexity

In this section, we analyze the asymptotic running time of our construction algorithm. The first
step of the algorithm computes the medial axis of all layers with all connections closed. This can be
achieved using a single 2D algorithm, because the medial axis consists of separate 2D components
that do not yet influence each other. Lemma 4.3 has shown that the number of connections k is
linear in the number of obstacle points n in the MLE. Thus, the presence of k connections does not
affect the asymptotic complexity, and we essentially compute a 2D medial axis of an input with
complexity O (n). Section 3.3 has shown that this can be performed in O (n logn) time.

5.6.1 Running Time to Open One Connection.

Lemma 5.12. A single connectionCi j can be opened in O (m logm) time, wherem is the complexity

of the neighbor set Ni j .

Proof. Our algorithm for opening a connection starts with two instances of a sweep line al-
gorithm [11]. Both instances take O (m logm) time, because they involve O (m) circle events that
need to be maintained in sorted order. Next, we perform one O (m)-time merge step of a divide-
and-conquer algorithm [58]. Therefore, the total running time is O (m logm). �

In many practical scenarios, the connections and obstacles are spread throughout the environ-
ment, and m will be constant in most iterations of the algorithm. However, if many obstacles are
close to the connection,m can be Θ(n).

5.6.2 Total Running Time. Based on Lemma 5.12, iteratively opening all connections takes
O (
∑k−1

i=0 mi logmi) time in total, wheremi is the neighbor set complexity of the connection that is
opened in iteration i . Note that the neighbor sets of closed connections can change during the al-
gorithm, because obstacles may turn out to influence other connections when a nearby connection
is opened. In other words, a neighbor set’s complexity depends on what lies beyond the nearby
connections that are already open. This suggests that the total construction time depends on the
order in which the connections are opened.

In many environments, each obstacle will only affect the algorithm in a constant number of iter-
ations regardless of this order, which means that the total construction time will remain O (n logn).
However, there are environments in which opening the connections in an “unlucky” order leads
to a worse construction time. The following lemma analyzes this.

Lemma 5.13. There exists an environment with n obstacle vertices and k connections such that

opening the connections in an inefficient order gives Θ(k) neighbor sets of complexity Θ(n).

Proof. Figure 11 shows an example in which a ramp has been subdivided into a chain of small
layers. All connections are close together, and the bottom connection has a row of Θ(n) neigh-
boring obstacles on the ground plane. If the connections are opened from the bottom to the top,
then the first neighbor set has complexity Θ(n). When the first connection is open, the same ob-
stacles have become neighbors of the second connection, so the second neighbor set will also have
complexity Θ(n). By repeating this argument, we see that this holds for each of the k iterations. �

When using the O (m logm)-time algorithm from Section 5.4 in each iteration, the total running
time for this unfortunate order becomes O (kn logn). In previous work [62], we reported this as

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:20 W. van Toll et al.

Fig. 11. A worst-case example for our incremental algorithm. A ramp has been subdivided into a sequence

of small layers. The ground floor contains a row of Θ(n) obstacles. If we open the connections from bottom

to top, then each connection will have Θ(n) obstacles in its neighbor set.

the worst-case running time of our algorithm. However, the following lemmas show that we can
always construct the medial axis in O (n logn logk) time by choosing an “easy” connection in each
iteration. We begin by showing that the medial axis has linear size throughout the entire algorithm.

Lemma 5.14. For any MLE, the medial axis has size O (n) in each iteration of our algorithm.

Proof. In the initial step of the algorithm, we compute a medial axis of O (n) sites, which has
size O (n). Since opening a connection is analogous to deleting a Voronoi site, the asymptotic
complexity of the graph cannot increase during the algorithm. �

Lemma 5.15. When q connections are still closed, there is at least one connection with a neighbor

set complexity of O (n
q

).

Proof. By Lemma 5.14, the medial axis always has O (n) arcs. At any point in the incremental
algorithm, every arc bounds the influence zone of at most two connections, namely one on each
side of the arc. Therefore, the combined complexity of all influence zones (or, equivalently, of all
neighbor sets) is O (n). When this O (n) complexity is shared by q connections, there must be at
least one connection with a neighbor set complexity of O (n

q
). �

Lemma 5.16. The k connections can be opened in O (n logn logk) total time.

Proof. We will repeatedly open the connection with the smallest neighbor set complexity. To
achieve this, we first compute the neighbor set complexities of all k closed connections. This can
be done in O (n) time by traversing the medial axis once and incrementing the complexity for a
connection Cx whenever an arc has Cx as a nearest obstacle. Next, we sort the connections by
complexity in a balanced binary search tree T . This requires O (k logk) time, which is O (n logn),
because k is O (n).

Assume for now that we can maintain the sorting order in T such that we can always get the
connection with the smallest complexity. Let Cq be this easiest connection when q connections
are closed. By Lemma 5.15, it has a complexity of O (n

q
). Using the algorithm of Section 5.4, we can

open it in O (n
q

log n
q

) time.
Next, we show that T can indeed be maintained efficiently. The neighbor sets of other closed

connections can change due to openingCq . However, any connection that is affected must be one
of the neighboring obstacles ofCq . Therefore, the number of neighbor sets that can change isO (n

q
).

We can update the complexities of these neighbor sets inO (n
q

) time: For each added or removed arc
with a connectionCx as a nearest obstacle, we increment or decrement the neighbor set complexity
for Cx . Afterwards, we update the search tree T by deleting and re-inserting all complexities
that have changed. This takes O (n

q
logq) time, because it requires O (n

q
) update operations. Thus,

opening Cq and updating T afterwards takes O (n
q

(log n
q
+ logq)) = O (n

q
logn) time.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:21

Because T is maintained correctly, we can always open the connection with the lowest neigh-
bor set complexity. For all k iterations combined, we obtain a running time of O (

∑k
q=1

n
q

logn) =

O (
∑k

q=1 (n logn · 1
q

)) = O (n logn
∑k

q=1
1
q

) = O (n logn · Hk). Here, Hk is the kth harmonic num-

ber, which is known to be Θ(logk). Therefore, the total running time to open all connections is
O (n logn logk). �

Combined with the O (n logn) running time for the first step (i.e., computing the medial axis of
each layer with all connections closed), we obtain the following result.

Theorem 5.17. The medial axis of an MLE with n obstacle vertices and k connections can be com-

puted in O (n logn logk) time.

5.7 Storage Complexity

Finally, we give the storage complexity of the multi-layered medial axis when all connections have
been opened. It follows immediately from Lemma 5.14: The complexity is O (n) at each point in
the algorithm, including at the end.

Theorem 5.18. The medial axis of an MLE with n obstacle vertices and k connections has a storage

complexity of O (n).

6 APPLICATION: THE EXPLICIT CORRIDOR MAP

The Explicit Corridor Map (ECM) is a navigation mesh that is closely related to the medial axis. In
this section, we give an improved definition of the ECM, we analyze its complexity, and we show
several useful geometric operations for path planning.

6.1 Definition

The ECM is a graph representation of the medial axis annotated with nearest-obstacle information.
It describes each medial axis arc and its surrounding free space in an efficient manner. As such, it
is a compact navigation mesh that can be used to find paths for characters of any radius.

Definition 6.1 (Explicit Corridor Map). For a 2D environment, WE, or MLE, the Explicit Corridor
Map ECM (E) is an extended representation of the medial axis MA(E) as an undirected graph
G = (V ,E) with the following properties:

• V is the set of true vertices of the medial axis (i.e., all medial axis vertices except those of
degree 2).

• E is the set of edges of the medial axis.
• Each edge ei j ∈ E represents the medial axis arcs between two true vertices vi ,vj ∈ V .

It is represented by a sequence of n′ ≥ 2 bending points1 bp0, . . . ,bpn′−1 where bp0 = vi ,
bpn′−1 = vj , and bp1, . . . ,bpn′−2 are the remaining semi-vertices along the edge.

• Each bending point is a medial axis vertex annotated with nearest-obstacle information. A
bending point bpk on an edge stores its two nearest obstacle points lk and rk on the left and
right side of the edge, respectively.

Figure 12(b) shows the ECM of our example environment. Since the ECM is an undirected graph,
any edge ei j could also be described as an edge eji , with the list of bending points reversed and
all left and right obstacle points swapped. Furthermore, a true vertex occurs as the first or last
bending point for each of its incident edges. Each such bending point has its own sense of left

1We originally referred to bending points as event points [14].

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:22 W. van Toll et al.

Fig. 12. (a) The medial axis of a 2D environment, repeated from Figure 2(b). (b) The ECM is a medial axis with

nearest-obstacle annotations, shown as orange line segments between vertices and their nearest obstacle

points. These segments are not edges in the graph. (c) Details of an ECM edge with four bending points.

Each bending point bpk stores its position pk and its nearest obstacle points lk and rk .

and right; together, they store all nearest obstacle points for the true vertex. Thus, it is sufficient
to store only two obstacle points for each bending point. We also emphasize that the orange line
segments in Figure 12(b) are not graph edges; they merely denote the relation between bending
points and their nearest obstacles. Figure 12(c) shows the details of an ECM edge.

Annotating the medial axis with nearest-obstacle information has many advantages. One ad-
vantage is that the clearance (the distance to the nearest obstacle) is known at each bending point.
This enables path planning for characters of any radius; that is, we do not have to inflate the
obstacles using Minkowski sums for a particular radius.

Our definition of the ECM applies not only to 2D environments but also to walkable and multi-
layered environments without requiring any adjustments. In a WE or MLE, the nearest obstacle
to a point q ∈ Efree may lie in another layer than q itself. Therefore, a nearest obstacle point to
an ECM bending point bpk may lie in another layer than bpk . This does not change the ECM’s
definition or complexity. Due to the straight-line property, the path from a bending point to any
of its nearest obstacle points is a line segment when projected onto P .

6.2 Complexity

We have shown that the medial axis has O (n) complexity in a 2D environment with n obstacle ver-
tices (Section 3.3), in a WE with n boundary vertices (Section 5.7), and in an MLE with n boundary
vertices (regardless of the number of connections). The next lemma states that the medial axis can
easily be converted to an ECM of the same complexity.

Lemma 6.2. A medial axis with complexity O (n) can be converted to an ECM of complexity O (n)
in O (n) time.

Proof. The ECM converts medial axis vertices to bending points by adding nearest-obstacle
annotations. A degree-2 vertex becomes a single bending point, and any other vertex receives
a separate bending point for each incident edge. The nearest-obstacle annotations can easily be
added in a post-processing step (or even during the construction algorithm itself). After all, a
medial axis arc is defined by an obstacle part (a line segment or a point) on both sides of the arc.
The two nearest obstacle points for a bending point bpk are simply the nearest points to bpk on
these obstacle parts. Thus, adding these annotations takes constant time per bending point.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:23

What remains to be analyzed is the total number of bending points. Each medial axis vertex
of degree 1 or 2 occurs as a bending point exactly once. A vertex of degree d ≥ 3 occurs as a
bending point d times: once for each edge that contains this vertex as an endpoint. Since the sum
of all vertex degrees is O (n), there are O (n) bending points in total, each of which requires O (1)
storage. Thus, the ECM adds a linear amount of information to the medial axis in linear time. �

The remainder of this section defines a number of operations on the ECM that are useful for path
planning. These concepts apply to both 2D and multi-layered environments. For more information
on how these concepts fit into a generic crowd simulation framework, we refer the reader to an
overview [65].

6.3 Computing Nearest Obstacles and Retractions

The ECM event points and their nearest-obstacle annotations subdivide the free space Efree into
non-overlapping polygonal cells. This subdivision has O (n) edges and vertices. We can therefore
perform point-location queries to find out in which ECM cell a query point is located. Such queries
can be answered in O (logn) time using, e.g., a trapezoidal map, which can be built in O (n logn)
time [3]. For MLEs, we create a separate point-location data structure for each layer. A query point
in an MLE is specified by a 2D point and a layer ID.

Once the cell containing a query pointp has been determined, we can compute the nearest obsta-

cle point np (p) in constant time, because each cell has constant complexity. In a crowd simulation
application, we can use this to easily determine how far each character is removed from the nearest
boundary.

Points in the free space can be retracted onto the medial axis. In robot motion planning, the term
retraction is used for a function that maps points in Efree onto the medial axis [71], as well as for
complete planning methods based on this principle [46]. We use the following definition:

Definition 6.3 (Retraction). For any point p in the free space Efree , the retraction Retr (p) is a
unique projection of p onto the medial axis:

(1) If p lies on the medial axis, then Retr (p) = p.
(2) If p does not lie on the medial axis, then let l be the half-line that starts at np (p) and passes

through p. Retr (p) is the first intersection of l with the medial axis.

Figure 13(a) shows examples of retractions. A retraction can be computed in O (logn) time by
using a point-location query followed by constant-time geometric operations.

6.4 Computing a Path

To plan a path for a disk-shaped character in the ECM, we first find a path along the medial axis
that has sufficient clearance. This is equivalent to the retraction method for motion planning [46]:
Given a start position s and a goal position д in Efree , we compute their retractions, and then we
compute an optimal path on the medial axis from Retr (s) to Retr (д) using the A* search algorithm.
This search is efficient, because the medial axis is a sparse graph compared to, e.g., a grid. The
clearance information stored in each ECM bending point allows us to precompute the minimum

clearance along each edge. The search can then skip edges for which the clearance is too low for
our disk to pass through.

The free space around a medial axis path can be described using a corridor, which is the sequence
of ECM cells along the path combined with the maximum-clearance disks at its ECM vertices [14].
Figure 13(b) shows an example.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:24 W. van Toll et al.

Fig. 13. (a) Examples of query points (shown as large dots), their nearest obstacle points (small dots), and

their retractions (circles). (b) Given two positions s and д, the retraction method is used to compute a path

from s toд along the medial axis. A corridor describes the free space around this path. (c) Within the corridor,

we can compute various types of indicative routes, e.g., with an amount of preferred clearance.

6.5 Computing an Indicative Route

An ECM path can be converted into an indicative route: a curve for the character to follow. Various
types of indicative routes can be obtained in O (m) time, wherem is the number of ECM cells along
the path. For instance, we can use a funnel algorithm to obtain the shortest path within a corridor,
while keeping a preferred distance to obstacles whenever possible [14]. Examples are displayed in
Figure 13(c). It is also easy to compute indicative routes that stay on the left or right side of the free
space (or any interpolation of these extremes). Varying the “side preference” among characters is
a convenient way to obtain diversity in the crowd.

6.6 Dynamic Updates

In dynamic environments, large obstacles can appear or disappear during the simulation. In pre-
vious work [63], we have presented algorithms that update the ECM locally due to the insertion
or deletion of a convex polygonal obstacle P . A dynamic insertion takes O (m + logn) time, where
m is the combined complexity of the neighboring obstacles for P . A dynamic deletion requires
O (m logm + logn) time. For more details, we refer interested readers to the corresponding pub-
lication [63]. After a dynamic event, a character can efficiently re-plan a new optimal path in the
updated mesh based on its previous path [64].

7 IMPLEMENTATION

We have implemented the Explicit Corridor Map as part of a crowd simulation framework [65].
The software was written in C++ in Visual Studio 2013.

To compute the medial axis and ECM, we have integrated two different libraries for computing
Voronoi diagrams: Vroni [19] and a package of Boost [7]. Since the Boost Voronoi library requires
integer coordinates as input, we multiply all coordinates by 10,000 and round them to the nearest
integer. For convenience, we use these rounded coordinates in Vroni as well. We use meters as
units, so this scaling implies that we represent all coordinates within a precision of 0.1mm.

In an earlier publication [62], we used an approximating GPU-based ECM implementation based
on the work of Hoff et al. [24], However, we will not report the details of this approach, because
it has proven to be less efficient and less practical than the other implementations.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:25

Fig. 14. The set of 2D environments and their ECMs. Zelda4x4 and Zelda8x8 are not shown, because they

are very large and they are structurally similar to Zelda2x2.

Both Vroni and Boost assume that the input sites are interior-disjoint line segments. In practice,
environments are often drawn by hand and may contain overlapping geometry. Therefore, before
computing the ECM, we use another component of Boost to convert obstacles to interior-disjoint
segments, using the scaled integer coordinates described earlier. After computing the ECM, we
remove all graph components that lie inside obstacle polygons. These steps will be included in our
time measurements.

In some environments, the medial axis may contain edges that run across many layers. We
ensure that each edge can be associated with a single layer, mainly for visualization purposes.
We do this by splitting each edge wherever it intersects one of the (now opened) connections.
Computing these intersections takes extra time, and it can increase the worst-case complexity of
the graph to O (kn) if many edges intersect many connections, such as in Figure 11. We consider
this post-processing to be optional and not part of the main algorithm.

Section 8.2 will show that our implementation of the multi-layered ECM construction algorithm
is very fast in practice. For future work, there are two potential improvements. First, we currently
open the connections in the order in which they are listed in the environment, which is not nec-
essarily optimal. Second, we open the connections using our old algorithm [62], so we cannot yet
handle self-overlap near connections such as in Figure 6. However, these theoretical issues are not
a problem for any of the real-world environments in our test set.

For simplicity, we have implemented indicative routes as piecewise linear curves. Circular or
parabolic arcs in an indicative route are approximated by sequences of line segments.

8 EXPERIMENTS

This section assesses the performance of our ECM implementations in a range of 2D and multi-
layered environments. All experiments were run on a Windows 7 PC with a 3.20GHz Intel i7-3930K
CPU, an NVIDIA GeForce GTX 680 GPU, and 16GB of RAM. Only one CPU core was used, except
at the end of Section 8.2 where we will use multi-threading to improve the performance in MLEs.

8.1 Environments

The 2D environments are shown in Figure 14; more details can be found in the upper part of
Table 1. Military is a simple environment with a small number of obstacles. City is a more complex
virtual city. Zelda is an environment from a computer game. Zelda2x2, Zelda4x4, and Zelda8x8 are
adapted versions of Zelda that have been duplicated in a 2 × 2, 4 × 4, and 8 × 8 grid pattern. We
have also used these environments in previous publications [63, 66].

The MLEs are shown in Figures 15–17 and are described in the lower part of Table 1:

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:26 W. van Toll et al.

Table 1. Details of the Environments Used in Our Experiments

Geometry Multi-layered

Environment #Obstacle vertices Size (m) #Layers #Connections
Military 108 200 × 200 1 0
City 2,102 500 × 500 1 0
Zelda 564 100 × 100 1 0
Zelda2x2 2,304 200 × 200 1 0
Zelda4x4 9,180 400 × 400 1 0
Zelda8x8 36,684 800 × 800 1 0
Ramps 147 100 × 100 7 8
Ramps2 422 100 × 100 7 8
Library 717 60 × 24 9 8
Station 2,242 153 × 111 34 64
Tower 6,058 35 × 35 17 30
Stadium 12,915 280 × 184 18 82
BigCity 49,476 500 × 500 113 196
BigCity2x2 197,884 1000 × 1000 449 784

Note: The Geometry columns show the number of obstacle vertices and the physical width and
height of the environment (in meters). The Multi-layered columns show the number of layers and
connections of each environment.

• Ramps consists of three flat layers connected by four ramps. Each ramp is modeled as a
separate layer for simplicity. Figure 1 at the beginning of this article shows Ramps and its
ECM in 3D.

• Ramps2 is a version of Ramps in which we have added 56 polygonal obstacles to the flat
layers.

• Library is a simplified model of the Utrecht University library.
• Station is a model of a train station with one main hall and one layer containing all plat-

forms; these two layers are connected by 32 ramps. Again, each ramp has been modeled as
a separate layer.

• Tower is a complex multi-storey apartment building.
• Stadium is a model of an American football stadium with many staircases and obstacles.

Since it has been drawn manually based on real-world data, it contains small gaps that gen-
erate disconnected graph components. It also features sequences of nearly-collinear points
that generate medial axis edges when the input coordinates have been rounded and scaled.
These graph elements seem redundant, but they are correct in our scaled integer coordinate
system.

• BigCity is a combination of the 2D city environment, six instances of Tower, and two in-
stances of Library. The towers are highly detailed compared to the rest of the environment.
Voxel-based navigation mesh algorithms would require a very high resolution to capture
all details.

• BigCity2x2 consists of four tiled instances of BigCity. It measures 1km2 and contains 784
connections.

These environments were chosen to broadly reflect a range of complexities in terms of the num-
ber of layers, obstacle vertices, and connections. In previous work [62], we also explored theoreti-
cally challenging “toy examples,” such as copies of an environment with an increasing number of

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:27

Fig. 15. 2D views of some of the MLEs used in our experiments. For Station, all stairways and escalators were

modeled as separate layers; these layers are not shown.

connections. In this article, we choose to focus on realistic environments instead. For more envi-
ronments, including ones that have been used in research on other navigation meshes, we refer
the reader to our recent comparative study [66].

8.2 Computing the ECM

For the 2D environments, the ECM complexities and construction times are shown in the upper part
of Table 2. Vroni and Boost handle degenerate cases such as degree-4 vertices differently, which
leads to slightly different ECM complexities for both implementations. The complexities in Table 2
were taken from the Boost version.

The Vroni-based implementation was faster than the Boost-based implementation in all envi-
ronments. For the most complex 2D environment, Zelda8x8, computing the ECM took just under
1s when using Vroni. Hence, even complex ECMs can be computed quickly. This allows the navi-
gation mesh to be generated interactively (e.g., when loading a game level or when used in a tool
for designing environments).

For the MLEs, the ECM complexities and construction times are shown in the lower part of
Table 2. While it can be seen that a multi-layered ECM takes more time to compute than a 2D
ECM of the same complexity, the construction time is still well under a second for all environments
except the two BigCity variants. For the largest environment, BigCity2x2, the construction takes
about 9s when using Vroni.

The Boost implementation for Voronoi diagrams is thread-safe, so we can use multi-threading

to compute the initial ECMs of all layers in parallel. The running times for this multi-threaded

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:28 W. van Toll et al.

Fig. 16. 2D views of several layers of the Stadium environment. Nearest-obstacle annotations of the ECM

have been omitted for clarity. Some inaccuracies in the input geometry are too small to see in this image.

Fig. 17. 3D views of the Library, Tower, and BigCity environments and their medial axes. For clarity, the

nearest-obstacle annotations of the ECM have been omitted. We have now colored the free space rather

than the obstacle space. The gray obstacles from the 2D City environment are now modeled as holes in the

free space of BigCity. BigCity2x2 is not shown, because it is very large and structurally similar to BigCity.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:29

Table 2. Details of the ECMs for Our Experiments

ECM complexity ECM time (ms)

Environment #Vertices #Edges #BPs Vroni Boost Boost (MT)
Military 56 71 288 3.5 [0.1] 6.7 [0.1] –
City 1,442 1,621 6,306 70.9 [0.3] 130.0 [0.7] –
Zelda 296 351 1,258 14.9 [0.1] 23.0 [0.2] –
Zelda2x2 1,184 1,408 5,082 59.2 [0.5] 92.0 [0.6] –
Zelda4x4 4,720 5,624 20,329 235.4 [2.4] 367.7 [1.6] –
Zelda8x8 18,848 22,480 81,365 997.4 [5.4] 1529.1 [3.8] –
Ramps 54 61 181 5.8 [0.2] 9.4 [0.3] 7.6 [0.1]
Ramps2 228 290 1,118 16.3 [0.4] 29.5 [0.6] 21.2 [0.1]
Library 219 222 599 14.7 [0.3] 20.2 [0.4] 9.2 [0.1]
Station 660 768 2,804 68.6 [0.3] 97.3 [0.5] 74.3 [0.3]
Tower 4,948 4,979 14,407 248.8 [2.2] 383.4 [1.3] 110.1 [3.4]
Stadium 6,303 7,754 26,323 442.4 [8.2] 572.2 [1.6] 263.5 [4.7]
BigCity 32,264 32,652 104,002 2168.6 [19.6] 3430.0 [10.9] 925.7 [29.6]
BigCity2x2 129,147 130,702 416,411 8972.5 [32.7] 14287.0 [41.7] 4219.3 [91.9]

Note: The ECM complexity columns show the number of vertices, edges, and bending points in the ECM computed
using Boost. The ECM time columns show the ECM construction time for the three implementations: Vroni, Boost, and
Boost with five parallel threads (for MLEs). All times are in milliseconds and have been averaged over 10 runs. Standard
deviations are shown between square brackets.

Boost version are also shown in Table 2. We used OpenMP with five parallel threads and dynamic
scheduling. This version performed particularly well in environments with many complex layers;
in particular, the ECM of BigCity2x2 was computed in approximately 4.2s. Standard deviations
among running times were higher, because the threads were scheduled in an unpredictable way.
Still, this implementation shows that multi-threading is a promising addition.

8.3 Path Planning

In each environment, we have computed indicative routes between 10,000 pairs of random start
and goal points. For each point, we first chose a random layer (if applicable) such that the proba-
bility of a layer being chosen was proportional to its surface area. The point itself was then chosen
by uniformly sampling in the layer’s bounding box until an obstacle-free point was found.

For each query pair (s,д), we computed the shortest path between Retr (s) and Retr (д) on the
medial axis using A* search, with the 2D Euclidean distance to Retr (д) as a heuristic. We then
converted this path to a short indicative route with a preferred distance of 0.5m to obstacles.

Table 3 show the average running times of the complete path planning query per environment.
The running time depends heavily on the complexity of the resulting path; this explains the high
standard deviations. It can be seen that queries require only a few milliseconds on average in the
most complex environments. Thus, the ECM allows real-time path planning for large crowds of
characters with individual goals. In very complex environments, grid-based planning would be
much slower, because a high grid resolution would be required to capture all details.

We refer the reader to previous work [65] for experiments on crowd simulation. This previous
publication has shown that the running time of a simulation without collision avoidance scales
linearly with the number of characters. Collision avoidance is inherently the most expensive step,
because characters need to find their neighbors and respond to their movement. By using four
CPU cores and eight parallel threads, we can currently simulate around 15,000 characters in real

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:30 W. van Toll et al.

Table 3. Results of the Path Planning

Experiments

Environment Planning time (ms)

Military 0.21 [0.15]
City 1.12 [0.70]
Zelda 0.41 [0.21]
Zelda2x2 0.96 [0.47]
Zelda4x4 1.99 [1.01]
Zelda8x8 4.65 [2.75]
Ramps 0.13 [0.08]
Ramps2 0.37 [0.18]
Library 0.53 [0.32]
Station 0.79 [0.48]
Tower 1.58 [0.68]
Stadium 2.22 [1.43]
BigCity 3.03 [2.55]
BigCity2x2 8.44 [7.59]

Note: The Planning time column shows the run-
ning time to compute a path, averaged over
10,000 random queries. All times are in millisec-
onds. Standard deviations are shown between
square brackets.

time with collision avoidance. The ECM framework has a small memory footprint that allows
simulations of at least 1 million characters. It has been successfully used to simulate crowded real-
life events such as the 2015 Tour de France opening in Utrecht (The Netherlands) and evacuations
of future metro stations in Amsterdam.

9 CONCLUSIONS AND FUTURE WORK

In robotics, simulations, and gaming applications, virtual walking characters often need to com-
pute and traverse paths through an environment. A navigation mesh is a subdivision of the free
space into polygons that allows real-time path planning for crowds of characters.

With this application area in mind, we have studied the medial axis for 3D environments with
a consistent direction of gravity. A walkable environment (WE) describes where characters can
walk. A multi-layered environment (MLE) is a WE that has been subdivided into 2D layers con-
nected by k connections with certain geometric properties. We have defined the medial axis for
WEs and MLEs based on projected distances on the ground plane. We have presented an algo-
rithm that computes this medial axis by initially treating all connections as closed obstacles and
then opening them incrementally. Compared to previous work [62], we have presented a new and
correct algorithm for opening a connection, and we have improved the overall running time to
O (n logn logk) by opening the connections in an efficient order.

We have presented an improved definition of the Explicit Corridor Map (ECM), which is a
navigation mesh based on the medial axis. The ECM enables path planning for disk-shaped
characters of any radius. It supports efficient geometric operations such as retractions, nearest-
obstacle queries, dynamic updates, and the computation of short paths with preferred clearance
to obstacles.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

The Medial Axis of a Multi-Layered Environment 2:31

Our implementation computes the ECM efficiently for large 2D and multi-layered environments.
The ECM supports important applications and operations, such as path planning and dynamic
updates. It is a useful basis for simulating large crowds of heterogeneous characters in real time
[65].

We have given an O (m logm)-time algorithm for opening a connection bounded by m medial
axis arcs. This algorithm is not necessarily optimal. For 2D Voronoi diagrams, a line segment site
can be removed inO (m) time [33]. While this linear-time algorithm cannot immediately be applied
to our multi-layered domain, it suggests that a O (m)-time solution for opening a connection might
exist. Finding such an algorithm is a challenge for future work. It would allow us to improve the
overall construction time for the multi-layered ECM to an optimal O (n logn).

A drawback of navigation meshes in general is that the shortest path in the dual graph (or, in our
case, the medial axis) is not necessarily homotopic to the shortest path in the entire environment.
Therefore, even a shortened path as described in Section 6.5 can be longer than the overall shortest
path. For future work, we want to analyze path lengths in the ECM and investigate how to improve
them. One option is to combine the ECM with a visibility graph, which yields shortest paths but
has a size of O (n2) [15, 69].

While it is common to use projected distances for navigation meshes, we would like to inves-
tigate how navigation meshes can be extended to encode information about height differences as
well. As explained in Section 2.3, one could simply use the WE itself as a data structure for path
planning, but this approach lacks some of the advantages of the ECM (such as the ability to com-
pute paths for disks of any radius).

Currently, state-of-the art 3D navigation meshes convert a raw 3D environment to a WE by us-
ing voxel-based filtering algorithms. Our comparative study of navigation meshes [66] has shown
that this approach is not ideal: It requires parameter tuning, it is not scalable to large environments,
and it sometimes sacrifices precision. We are therefore interested in developing exact algorithms
for obtaining walkable and multi-layered environments from arbitrary 3D geometry. Note that an
exact algorithm will recognize very small details in the environment that may not be relevant for
the application, especially when using imprecise real-world data.

If a WE is given as a set of triangles, then converting it to an MLE with a minimum number of
connections is NP-hard in the number of triangles [21]. However, there may be other criteria by
which an MLE can be considered “optimal,” such as the total length of all connections combined.
Finding an optimal MLE (or a constant-factor approximation of it) based on such criteria is an
interesting topic for future work.

We are also interested in lifting other 2D data structures to the multi-layered domain, including
visibility graphs and related concepts [52, 69]. We believe that MLEs give rise to an interesting
new class of problems for future research.

ACKNOWLEDGMENTS

We thank Elena Khramtcova for fruitful discussions on deletions in Voronoi diagrams, Arne Hille-
brand for helping us construct the 3D environments, and Incontrol Simulation Solutions for sup-
plying the Stadium environment.

REFERENCES

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. 1989. A linear-time algorithm for computing the Voronoi diagram
of a convex polygon. Discr. Comput. Geom. 4 (1989), 591–604.

[2] F. Aurenhammer, R. Klein, and D. T. Lee. 2013. Voronoi Diagrams and Delaunay Triangulations. World Scientific.
[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. 2008. Computational Geometry: Algorithms and Applications

(3rd ed.). Springer.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

2:32 W. van Toll et al.

[4] J. P. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha. 2011. Reciprocal n-body collision avoidance. In Proceedings

of the 14th International Symposium on Robotics Research. 3–19.
[5] G. Berseth, M. Kapadia, and P. Faloutsos. 2015. ACCLMesh: Curvature-based navigation mesh generation. In Proceed-

ings of the 8th ACM SIGGRAPH International Conference on Motion in Games. 97–102.
[6] H. Blum. 1967. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and

Visual Form, W. Whathen-Dunn (Ed.). MIT Press, Cambridge, MA, 362–380.
[7] Boost. 2018. The Boost C++ library. Retrieved from http://www.boost.org/.
[8] F. Chin, J. Snoeyink, and C. A. Wang. 1999. Finding the medial axis of a simple polygon in linear time. Discr. Comput.

Geom. 21, 3 (1999), 405–420.
[9] L. Deusdado, A. R. Fernandes, and O. Belo. 2008. Path planning for complex 3D multilevel environments. In Proceed-

ings of the 24th Spring Conference on Computer Graphics. 187–194.
[10] O. Devillers. 1999. On deletion in Delaunay triangulations. In Proceedings of the 15th Annual ACM Symposium on

Computational Geometry. 181–188.
[11] S. Fortune. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica 2 (1987), 153–174.
[12] M. Garber and M. C. Lin. 2004. Constraint-based motion planning using Voronoi diagrams. In Algorithmic Foundations

of Robotics V. Springer, 541–558.
[13] F. M. García, M. Kapadia, and N. M. Badler. 2014. GPU-based dynamic search on adaptive resolution grids. In Pro-

ceedings of the 31st IEEE International Conference on Robotics and Automation. 1631–1638.
[14] R. Geraerts. 2010. Planning short paths with clearance using explicit corridors. In Proceedings of the 27th IEEE Inter-

national Conference on Robotics and Automation. 1997–2004.
[15] S. K. Ghosh. 2007. Visibility Algorithms in the Plane. Cambridge University Press.
[16] P. J. Green and R. Sibson. 1978. Computing Dirichlet tessellations in the plane. Comput. J. 21, 2 (1978), 168–173.
[17] P. Hart, N. Nilsson, and B. Raphael. 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE

Trans. Syst. Sci. Cybernet. 4, 2 (1968), 100–107.
[18] D. Helbing and P. Molnár. 1995. Social force model for pedestrian dynamics. Phys. Rev. E 51, 5 (1995), 4282–4286.
[19] M. Held. 2011. VRONI and ArcVRONI: Software for and applications of Voronoi diagrams in science and engineering.

In Proceedings of the 8th International Symposium on Voronoi Diagrams in Science and Engineering. 3–12.
[20] J. Hershberger and S. Suri. 1999. An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28,

6 (1999), 2215–2256.
[21] A. Hillebrand, J. M. van den Akker, R. Geraerts, and J. A. Hoogeveen. 2016. Performing multicut on walkable environ-

ments. In Proceedings of the 10th International Conference on Combinatorial Optimization and Applications. 311–325.
[22] A. Hillebrand, J. M. van den Akker, R. Geraerts, and J. A. Hoogeveen. 2016. Separating a walkable environment into

layers. In Proceedings of the 9th ACM SIGGRAPH International Conference on Motion in Games. 101–106.
[23] M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann, and W. Klein. 2010. Graph-based approaches for simulating pedes-

trian dynamics in building models. In eWork and eBusiness in Architecture, Engineering and Construction. CRC Press,
Boca Raton, FL, 389–394.

[24] K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha. 1999. Fast computation of generalized Voronoi diagrams
using graphics hardware. In Proceedings of the International Conference on Computer Graphics and Interactive Tech-

niques. 277–286.
[25] C. Holleman and L. E. Kavraki. 2000. A framework for using the workspace medial axis in PRM planners. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, Vol. 2. 1408–1413.
[26] N. S. Jaklin, A. F. Cook IV, and R. Geraerts. 2013. Real-time path planning in heterogeneous environments. Comput.

Anim. Virtual Worlds 24, 3 (2013), 285–295.
[27] M. Kallmann. 2014. Dynamic and robust Local Clearance Triangulations. ACM Trans. Graph. 33, 5, Article 161.
[28] M. Kallmann and M. Kapadia. 2016. Geometric and Discrete Path Planning for Interactive Virtual Worlds. Morgan &

Claypool.
[29] I. Karamouzas and M. H. Overmars. 2010. A velocity-based approach for simulating human collision avoidance. In

Proceedings of the 10th International Conference on Intelligent Virtual Agents. 180–186.
[30] M. I. Karavelas. 2004. A robust and efficient implementation for the segment Voronoi diagram. In Proceedings of the

1st International Symposium on Voronoi Diagrams in Science and Engineering. 51–62.
[31] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. 2013. Finding shortest paths on terrains by killing two birds with

one stone. Proc. VLDB Endow. 7, 1 (2013), 73–84.
[32] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. 1996. Probabilistic roadmaps for path planning in high-

dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 4 (1996), 566–580.
[33] E. Khramtcova and E. Papadopoulou. 2015. Linear-time algorithms for the farthest-segment Voronoi diagram and

related tree structures. In Proceedings of the 26th International Symposium on Algorithms and Computation. 404–414.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

http://www.boost.org/

The Medial Axis of a Multi-Layered Environment 2:33

[34] D. G. Kirkpatrick. 1979. Efficient computation of continuous skeletons. In Proceedings of the IEEE 54th Annual Sym-

posium on Foundations of Computer Science. 18–27.
[35] S. Koenig and M. Likhachev. 2002. D* Lite. In Proceedings of the 18th National Conference of Artificial Intelligence.

476–483.
[36] J. J. Kuffner and S. M. LaValle. 2000. RRT-Connect: An efficient approach to single-query path planning. In Proceedings

of the 17th IEEE International Conference on Robotics and Automation. 995–1001.
[37] J. C. Latombe. 1991. Robot Motion Planning. Kluwer Academic.
[38] S. M. LaValle. 2006. Planning Algorithms. Cambridge University Press.
[39] D. T. Lee. 1982. Medial axis transformation of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. 4, 4 (1982), 363–

369.
[40] D. T. Lee and R. L. Drysdale III. 1981. Generalization of Voronoi diagrams in the plane. SIAM J. Comput. 10, 1 (1981),

73–87.
[41] W. Lee and R. Lawrence. 2013. Fast grid-based path finding for video games. In Advances in Artificial Intelligence.

Lecture Notes in Computer Science, Vol. 7884. Springer, 100–111.
[42] J.-M. Lien, S. L. Thomas, and N. M. Amato. 2003. A general framework for sampling on the medial axis of the free

space. In Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 3. 4439–4444.
[43] M. Mononen. 2017. Recast Navigation. Retrieved from https://github.com/memononen/recastnavigation/.
[44] M. Moussaïd, D. Helbing, and G. Theraulaz. 2011. How simple rules determine pedestrian behavior and crowd disas-

ters. Proc. Natl. Acad. Sci. U.S.A. 108, 17 (2011), 6884–6888.
[45] R. Narain, A. Golas, S. Curtis, and M. C. Lin. 2009. Aggregate dynamics for dense crowd simulation. ACM Trans.

Graph. 28, 5 (2009), 1–8.
[46] C. Ó’Dúnlaing and C. K. Yap. 1985. A ‘retraction’ method for planning the motion of a disc. J. Algor. 6, 1 (1985),

104–111.
[47] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. 2000. Spatial Tessellations: Concepts and Applications of Voronoi

Diagrams (2nd ed.). John Wiley & Sons.
[48] R. Oliva and N. Pelechano. 2013. A generalized exact arbitrary clearance technique for navigation meshes. In Pro-

ceedings of the 6th International Conference on Motion in Games. 103–110.
[49] R. Oliva and N. Pelechano. 2013. NEOGEN: Near optimal generator of navigation meshes for 3D multi-layered envi-

ronments. Comput. Graph. 37, 5 (2013), 403–412.
[50] S. Patil, J. P. van den Berg, S. Curtis, M. C. Lin, and D. Manocha. 2010. Directing crowd simulations using navigation

fields. IEEE Trans. Vis. Comput. Graph. 17, 2 (2010), 244–254.
[51] J. Pettré, J.-P. Laumond, and D. Thalmann. 2005. A navigation graph for real-time crowd animation on multilayered

and uneven terrain. In Proceedings of the 1st International Workshop on Crowd Simulation. 81–89.
[52] M. Pocchiola and G. Vegter. 1993. The visibility complex. In Proceedings of the 9th Annual Symposium on Computa-

tional Geometry. 328–337.
[53] R. M. Polak. 2016. Extracting Walkable Areas from 3D Environments. Master’s Thesis. Utrecht University.
[54] F. Preparata. 1977. The medial axis of a simple polygon. In Mathematical Foundations of Computer Science. Vol. 53.

Springer, 443–450.
[55] C. Reynolds. 1999. Steering behaviors for autonomous characters. In Proceedings of the Game Developers Conference.

763–782.
[56] B. C. Ricks and P. K. Egbert. 2014. A whole surface approach to crowd simulation on arbitrary topologies. IEEE Trans.

Vis. Comput. Graph. 20, 2 (2014), 159–171.
[57] S. Rodriguez and N. M. Amato. 2011. Roadmap-based level clearing of buildings. In Proceedings of the 4th International

Conference on Motion in Games. 340–352.
[58] M. I. Shamos and D. Hoey. 1975. Closest-point problems. In Proceedings of the 16th Annual IEEE Symposium on Foun-

dations of Computer Science. 151–162.
[59] G. Snook. 2000. Simplified 3D movement and pathfinding using navigation meshes. In Game Programming Gems,

Mark DeLoura (Ed.). Charles River Media, 288–304.
[60] N. Sturtevant. 2012. Benchmarks for grid-based pathfinding. Trans. Comput. Intell. AI Games 4, 2 (2012), 144–148.
[61] D. Thalmann and S. R. Musse. 2013. Crowd Simulation (2nd ed.). Springer.
[62] W. G. van Toll, A. F. Cook IV, and R. Geraerts. 2011. Navigation meshes for realistic multi-layered environments. In

Proceedings of the 24th IEEE/RSJ International Conference on Intelligent Robots and Systems. 3526–3532.
[63] W. G. van Toll, A. F. Cook IV, and R. Geraerts. 2012. A navigation mesh for dynamic environments. Comput. Anim.

Virtual Worlds 23, 6 (2012), 535–546.
[64] W. van Toll and R. Geraerts. 2015. Dynamically Pruned A* for re-planning in navigation meshes. In Proceedings of the

28th IEEE/RSJ International Conference on Intelligent Robots and Systems. 2051–2057.

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

https://github.com/memononen/recastnavigation/

2:34 W. van Toll et al.

[65] W. van Toll, N. Jaklin, and R. Geraerts. 2015. Towards believable crowds: A generic multi-level framework for agent
navigation. In Proceedings of the ASCI.OPEN/ ICT.OPEN (ASCI track) Conference.

[66] W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré, and R. Geraerts. 2016. A comparative study
of navigation meshes. In Proceedings of the 9th ACM SIGGRAPH International Conference on Motion in Games. 91–100.

[67] A. Treuille, S. Cooper, and Z. Popović. 2006. Continuum crowds. ACM Trans. Graph. 25 (2006), 1160–1168. Issue 3.
[68] Unity3D Game Engine. 2018. Retrieved from http://www.unity3d.com/.
[69] R. Wein, J. P. van den Berg, and D. Halperin. 2007. The visibility-Voronoi complex and its applications. Comp. Geom.

Theor. Appl. 36 (2007), 66–87.
[70] E. Whiting, J. Battat, and S. Teller. 2007. Topology of urban environments: Graph construction from multi-building

floor plan data. In Proceedings of the 12th International Conference on Computer-Aided Architectural Design. 115–128.
[71] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. 1999. MAPRM: A probabilistic roadmap planner with sampling on the

medial axis of the free space. In Proceedings of the 16th IEEE International Conference on Robotics and Automation.
1024–1031.

Received June 2016; revised October 2017; accepted March 2018

ACM Transactions on Spatial Algorithms and Systems, Vol. 4, No. 1, Article 2. Publication date: May 2018.

http://www.unity3d.com/

